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Containers are back !

 History of containers
● VServers, OpenVZ
● Solaris zones, BSD jails

 Cheaper virtualization for cloud services
 Hardware independent
 LXC(s) containers 

● Improvements at the Linux kernel level



Containers technical points

                One kernel to run them all !

●Partitioning and containment
● Single OS image
● Memory, disk and network 

●Use 'recent' kernel features
● Cgroups, namespaces, SELinux

●Very cheap:
● No penalty at run time!
● Near instant provisioning
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Container systems

 Usually minimal base OS software
● Minimize footprint and update rate
● Minimize incompatibilities with user applications
● No extra software means less risks

 Each container usually embeds one application
● One service per container
● All dependencies are dragged in the container
● Containers are cloned to handle load

 The isolation is based on kernel properties
● Kernel namespaces
● Kernel cgroups
● SELinux 



In a cloud context

 Conflicting requirements:
 For containers:

● Container system kernels need to be recent
● Container system base os should be minimal

 For cloud:
● Cloud base OS need to be fairly stable
● Cloud management code is rather complex

 As a result

Containers are usually not run on bare metal
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Managing Applications

 Packaging
● Application centric
● No dependency hell
● Full control of versions

 Provisioning
● Catalog, identity, signing
● Container setup
● Service registration

 Scaling
● Load monitoring and balancing

 Plus reporting, accounting ...



Example: OpenShift

 Openshift PaaS
● Runs on AWS, VMs or Cloud
● Cartridge to package apps
● Containers based on cgroups and SELinux

 Broker balancing the load and scaling the applications
● Number of gears scale with load

 Change in application data are maintained though git
● Pushes are then pulled to all running copies



Example Docker

 Managing the application
 Integrated packaging

● Self sufficient (embed dependencies)
● Building tools
● Runtime based on containers (LXC)

 Specifics:
● A daemon runs on the node
● Docker client to manage interactions
● Registry of images

 Not yet at 1.0, Work in Progress but getting close !



Example Project Atomic 

 Minimal systems:
● Based on Fedora (RHEL-7, CentOS)
● 120MB memory footprint
● Systemd, Dbus, sshd and docker

 Uses SELinux to increase protections between containers
 New daemon geard to help manage applications

● Developed from OpenShift
● Manage app installation and replication

 New GUI Cockpit to handle the instances 



How to update: rpm-ostree

 Keep existing distro mechanisms
 Smaller set of installed packages
 Parallel installation:

● Initial tree
● Updated tree
● Shared files are hardlinks

 Install of updates
● New subtree
● 3-way merge



Rpm-ostree

 On server : build ostree updates
● from an 'usual' rpm flow (repos)
● A content description
● Generate a flow of ostree versions

 On target systems
● Rpm-ostree 'update'
● Pull the changes, create a new tree
● Merge in the changes, preserving modifications

prepare for update on reboot
● Rpm-ostree 'rollback'

 At any time the system is running a defined state !    



Atomic updates

V
1

V
2

/ostree

/

sbin

sshd

sshd

sshd



Work in progress

 Containers are only now deemed stable enough
 Docker established his format in less than a year
 APIs and integration of containers in the base OS
 Scaling and performance
 Automating the management
 Some applications Just Don't Scale
 Security standards and best practices
 Keeping the user data available and safe
 ...



Conclusion

 What is so revolutionary ?
● 3 level of systems
● Change in packaging
● New OS update models

 Challenges ahead:
● Stabilize
● Integration and APIs
● Smart management layer
● Security 
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