
Revolution in Virtualized
Workload Management

Daniel Veillard
veillard@redhat.com

http://veillard.com/Talks/LinuxConJapan2014.pdf

Containers are back !

 History of containers
● VServers, OpenVZ
● Solaris zones, BSD jails

 Cheaper virtualization for cloud services
 Hardware independent
 LXC(s) containers

● Improvements at the Linux kernel level

Containers technical points

 One kernel to run them all !

●Partitioning and containment
● Single OS image
● Memory, disk and network

●Use 'recent' kernel features
● Cgroups, namespaces, SELinux

●Very cheap:
● No penalty at run time!
● Near instant provisioning

A spectrum of 'virtualizations'

Isolation

Cheap

Emulation

Virtualization

Paravirtualization

Containers

Application

QEmu

Xen, KVM,VirtualBox, VMWare

XenPV

Virt hardware features

Virt OS features

Virt App faturesLXC, OpenVZ

Apache VirtHost

VirtIO

OS, Container and Applications

Kernel

App

Container

System

AppApp

ContainerContainer

Container systems

 Usually minimal base OS software
● Minimize footprint and update rate
● Minimize incompatibilities with user applications
● No extra software means less risks

 Each container usually embeds one application
● One service per container
● All dependencies are dragged in the container
● Containers are cloned to handle load

 The isolation is based on kernel properties
● Kernel namespaces
● Kernel cgroups
● SELinux

In a cloud context

 Conflicting requirements:
 For containers:

● Container system kernels need to be recent
● Container system base os should be minimal

 For cloud:
● Cloud base OS need to be fairly stable
● Cloud management code is rather complex

 As a result

Containers are usually not run on bare metal

3 layered cloud
Physical nodePhysical node Physical node

VMs VMsVMs

Cloud management

Container management

Managing Applications

 Packaging
● Application centric
● No dependency hell
● Full control of versions

 Provisioning
● Catalog, identity, signing
● Container setup
● Service registration

 Scaling
● Load monitoring and balancing

 Plus reporting, accounting ...

Example: OpenShift

 Openshift PaaS
● Runs on AWS, VMs or Cloud
● Cartridge to package apps
● Containers based on cgroups and SELinux

 Broker balancing the load and scaling the applications
● Number of gears scale with load

 Change in application data are maintained though git
● Pushes are then pulled to all running copies

Example Docker

 Managing the application
 Integrated packaging

● Self sufficient (embed dependencies)
● Building tools
● Runtime based on containers (LXC)

 Specifics:
● A daemon runs on the node
● Docker client to manage interactions
● Registry of images

 Not yet at 1.0, Work in Progress but getting close !

Example Project Atomic

 Minimal systems:
● Based on Fedora (RHEL-7, CentOS)
● 120MB memory footprint
● Systemd, Dbus, sshd and docker

 Uses SELinux to increase protections between containers
 New daemon geard to help manage applications

● Developed from OpenShift
● Manage app installation and replication

 New GUI Cockpit to handle the instances

How to update: rpm-ostree

 Keep existing distro mechanisms
 Smaller set of installed packages
 Parallel installation:

● Initial tree
● Updated tree
● Shared files are hardlinks

 Install of updates
● New subtree
● 3-way merge

Rpm-ostree

 On server : build ostree updates
● from an 'usual' rpm flow (repos)
● A content description
● Generate a flow of ostree versions

 On target systems
● Rpm-ostree 'update'
● Pull the changes, create a new tree
● Merge in the changes, preserving modifications

prepare for update on reboot
● Rpm-ostree 'rollback'

 At any time the system is running a defined state !

Atomic updates

V
1

V
2

/ostree

/

sbin

sshd

sshd

sshd

Work in progress

 Containers are only now deemed stable enough
 Docker established his format in less than a year
 APIs and integration of containers in the base OS
 Scaling and performance
 Automating the management
 Some applications Just Don't Scale
 Security standards and best practices
 Keeping the user data available and safe
 ...

Conclusion

 What is so revolutionary ?
● 3 level of systems
● Change in packaging
● New OS update models

 Challenges ahead:
● Stabilize
● Integration and APIs
● Smart management layer
● Security

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

