
NFV and Containers
Evolution or Revolution ?

Huawei Nov 2015
Daniel Veillard <veillard@redhat.com>
a.k.a. 李达尼

mailto:veillard@redhat.com


Presentation
 Working at Red Hat

● Since 2001, previously at W3C
● RHN, Desktop, Virtualization as developer
● Manager for Standards and NFV in OSAS
● Manager of a tools team on Containers

 Libxml2 and libxslt
● Created in 98
● Main author, maintainer of the libraries

 Libvirt
● Created in 2005, 10 year anniversary on Monday!
● Main initial author
● Releases maintainer



NFV revolution
 Virtualize the compute nodes
 Possible due to technology improvements in virt
 Cheaper 
 Cost effectiveness of dynamic placement and scaling
 More control over execution

● Migration
● Resource control 

 Most workload can be kept mostly unchanged



Virtualizing the workloads
 This mostly leaves the application and their OS untouched

node 1 node 2 node 3 node 4

App 1 App 2 App 3 App 4
OSOS OS OS

OS OS OS OS

OS OS



Containers
 First seen as a lighter way way to virtualize
 Based on partitioning the resources between applications
 Based on kernel support like cgroups and namespaces
 Single kernel on the node
 The applications run on top of the base OS but with a 

limited view of the resources
 Weaker inter-application protection
 No support for migration in general
 But very efficient:

● Very lightweight
● One kernel to rule them all
● Achieves very high density levels



Containerizing the workload 
 Usually one container per process
 They all share the same kernel and base OS

● so need to be compatible
 In practice most of the required libraries and helpers are 

put in the container
● Minimize the level of dependancy and requirement
● Raises the problem of updates

OS



Containers for NFV
 ETSI NFV looking at containers
 Easier to give direct hardware access
 Better efficiency

● Scheduling flow as steps in a pipeline has less 
overhead

● Density, and a single kernel
 Isolation is not at the same level as with virt

● SELinux and other kernel mechanisms
● If a virt kernel crash it affects only one app

 Single kernel and base OS means standardization



Drivers for technical evolution

Safer

Cheaper
Virtualization

Container



Containers vs. Virt environments
 The problem of APIs
 NFV picking up OpenStack

● Not an ideal support for container directly
● Libvirt has a container driver but not used much

 Containers have dedicated frameworks
● OpenShift
● Kubernetes
● Mesos + marathon
● …

 Virtual workloads are not scaled up/down as simply
 It's also an application problem



The 3 layers cake
 e.g. OpenShift on AWS or Openshift on OpenStack
 Kubernetes on OpenStack

OS OS OS OS

OS OS
Nodes

VMs

Containers



Container software model: Docker

 Provide tools to provision the content of containers
 Define this as the model to build and deploy applications
 Make it independent of the base OS (mostly)

=> Suddenly containers become sexy



Rebuilding legacy apps
 Application are usually multi-processes

● Splitting the apps into multiple containers
● Define APIs
● Build scaling in and out using container instances

 Break classic model of dependencies on a base OS
● Bundle libs in the package
● Container inheritance

 Need support from tools on how to redefine the apps



Common use case outside of NFV
 Content provider (Google, Seznam, BBC …)
 Speeding up the workflow and delivery of apps

● From developper to live in hours
● DevOps kind of workflow
● Implementation of CI/CD workflows

 Web applications
 Data crunching



Certification of containers on the base OS
 Contrary to virt, the OS is not part of application delivery
 The 'surface of contact' between the application and OS

● Is larger
● Is beyond just the kernel APIs
● Parts moving in the base OS can affect the container

 So applications need to be 'certified' against the OS
● Vendor certification e.g. Red Hat certification
● In-house certification

 The trend is to have minimal OS versions dedicated
● Red Hat Enterprise Atomic
● CoreOS
● ...



Way forward and collaboration
 Look in the NFV catalog functions:

● That are already service based
● That do not require the protection of virt

 Modify the application to be container ready
● Convert them to run in one container (automatable) 
● Split the containers at the service boundaries

 Define orchestration requirements for the app
 We can help with this !



Conclusions
 In the last 2 years containers moved from evolution

● Cheaper application isolation
● Integration in the virtualization stack

 To revolution
● Define a new application format
● New software delivery mechanisms

 Revolution for NFV as the traditional workloads are 
transitionned to the new model

 This will impact future definitions of NFV standards as 
done by ETSI

 This will impact the OS vendor relationship
 Some workloads will not change easilly, normal 

virtualization will still be available
 Be ready for a 3 layer cake: physical + virt + containers


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

